24 research outputs found

    The Asymptotic Inversion of Certain Cumulative Distribution Functions

    Get PDF
    The inversion of cumulative distribution functions is an important topic in statistics, probability theory and econometrics, in particular for computing percentage points of the distribution functions. The numerical inversion of these distributions needs accurate starting values, and for the standard distributions powerful asymptotic formulas can be used to obtain these values. It is explained how a uniform asymptotic expansions of a standard form representing several well-known distribution functions can be used for the asymptotic inversion of these functions. As an example we consider the inversion of the hyperbolic cumulative distribution function

    Pricing Rainfall Based Futures Using Genetic Programming

    Get PDF
    Rainfall derivatives are in their infancy since starting trading on the Chicago Mercantile Exchange (CME) since 2011. Being a relatively new class of financial instruments there is no generally recognised pricing framework used within the literature. In this paper, we propose a novel framework for pricing contracts using Genetic Programming (GP). Our novel framework requires generating a risk-neutral density of our rainfall predictions generated by GP supported by Markov chain Monte Carlo and Esscher transform. Moreover, instead of having a single rainfall model for all contracts, we propose having a separate rainfall model for each contract. We compare our novel framework with and without our proposed contract-specific models for pricing against the pricing performance of the two most commonly used methods, namely Markov chain extended with rainfall prediction (MCRP), and burn analysis (BA) across contracts available on the CME. Our goal is twofold, (i) to show that by improving the predictive accuracy of the rainfall process, the accuracy of pricing also increases. (ii) contract-specific models can further improve the pricing accuracy. Results show that both of the above goals are met, as GP is capable of pricing rainfall futures contracts closer to the CME than MCRP and BA. This shows that our novel framework for using GP is successful, which is a significant step forward in pricing rainfall derivatives

    Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules

    Full text link
    We show how to obtain a fast component-by-component construction algorithm for higher order polynomial lattice rules. Such rules are useful for multivariate quadrature of high-dimensional smooth functions over the unit cube as they achieve the near optimal order of convergence. The main problem addressed in this paper is to find an efficient way of computing the worst-case error. A general algorithm is presented and explicit expressions for base~2 are given. To obtain an efficient component-by-component construction algorithm we exploit the structure of the underlying cyclic group. We compare our new higher order multivariate quadrature rules to existing quadrature rules based on higher order digital nets by computing their worst-case error. These numerical results show that the higher order polynomial lattice rules improve upon the known constructions of quasi-Monte Carlo rules based on higher order digital nets

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    A note on the pricing of multivariate contingent claims under a transformed-gamma distribution

    Get PDF
    We develop a framework for pricing multivariate European-style contingent claims in a discrete-time economy based on a multivariate transformed-gamma distribution. In our model, each transformed-gamma distributed underlying asset depends on two terms: a idiosyncratic term and a systematic term, where the latter is the same for all underlying assets and has a direct impact on their correlation structure. Given our distributional assumptions and the existence of a representative agent with a standard utility function, we apply equilibrium arguments and provide sufficient conditions for obtaining preference-free contingent claim pricing equations. We illustrate the applicability of our framework by providing examples of preference-free contingent claim pricing models. Multivariate pricing models are of particular interest when payoffs depend on two or more underlying assets, such as crack and crush spread options, options to exchange one asset for another, and options with a stochastic strike price in general

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    ON THE TRACTABILITY OF THE BROWNIAN BRIDGE ALGORITHM

    No full text
    Dedicated to Prof. Heinz Engl on the occasion of his 50 th birthday Abstract. Recent results in the theory of quasi-Monte Carlo methods have shown that the weighted Koksma-Hlawka inequality gives better estimates for the error of quasi-Monte Carlo algorithms. We present a method for finding good weights for several classes of functions and apply it to certain algorithms using the Brownian Bridge construction, which are important for financial applications. 1

    A Method for Approximate Inversion of the Hyperbolic CDF

    No full text

    Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift

    No full text
    In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz function of the state only. We only require a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point of discontinuity of the drift, while we need to impose certain structural assumptions on the measure-dependence of the drift. Second, we study Euler–Maruyama type schemes for the particle system to approximate the solution of the one-dimensional McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the number of time-steps and number of particles. Due to the discontinuity of the drift, the convergence analysis is non-standard and the usual strong convergence order 1/2 known for the Lipschitz case cannot be recovered for all presented schemes

    NOTES ON EXACT AND SEMI-EXACT LÉVY MODELS FOR THE VALUATION OF CDOs

    No full text
    We investigate the effects of certain simplifying assumptions that are often made when valuating tranches of collateralized debt obligations (CDOs) using a firm's value approach. Those assumptions are the homogeneity and largeness of the portfolio and the so-called European approximation. The error made in this way is measured by comparing the result to a model with less simplification which is evaluated by the use of Monte Carlo simulation.CDOs, correlated debt, LĂ©vy one-factor model, Monte Carlo simulation, control variates
    corecore